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I. Introduction 

The definition of the semantics of a programming 
language can be formulated in different ways. Knuth  
[1, 2] has proposed attribute grammars  for this purpose. 
This kind of language definition consists of two parts: 
the syntax defined by a context-free grammar  and the 
semantics defined in terms of attributes, associated with 
the syntactic symbols, and semantic functions which 
determine the evaluation of the attributes on the 
derivation tree of a program. This method has several 
advantages: (a) the semantic description of a language 
is structured according to the syntax; (b) the context- 
sensitive features of  a programming language can be 
described; (c) the description of a language can be 
checked for consistency and used for automatic com- 
piler generation; and (d) different descriptions of the 
same language may be proven equivalent [3]. The 
method has been used for a definition of the program- 
ming language Simula [4]. Related concepts are property 
grammars  [5], attributed grammars  with relations [6], 
and affix grammars  [7]. 

In Section 2 we give an example of using an attribute 
g rammar  for the description of a programming language 
construct. The given attribute grammar,  which de- 
scribes the Algol scope rules, turns out not to be ade- 
quate for an evaluation from left to right. Appropriate  
changes to the grammar  are discussed in the following 
sections. Section 3 contains a formal definition of at- 
tribute grammars  and a discussion of some of its im- 
portant  aspects. This section is essentially a review of 
known results. 

In Section 4, we introduce the concept of left-to- 
right evaluation, and give conditions which allow a 
semantic evaluation of the derivation tree of  any pro- 
gram in a single pass from left to right. In Section 5, 
several passes from left to right are considered, and an 
algorithm is given which determines for a given attri- 
bute grammar  the number of passes necessary. The 
concept of left-to-right evaluation in several passes, as 
described in this paper, is related to the practice of 
writing compilers which do several passes over the 
internal representation of a program in order to obtain 
its translation. By formalizing the concept of multipass 
compilation within the f ramework of attribute gram- 
mars, it is possible to determine the attributes that can 
be evaluated in each individual pass. 

In Section 6, we relate these results to the practice of 
compiling programming languages. After pointing out 
the relative efficiency of the left-to-right evaluation 
scheme compared to more general ones, we discuss the 
possibility of recasting the semantic definition of a given 
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Fig. l(a). Syntactic rules and semantic functions of a simple 
grammar, discussed in Section 2. 
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Fig. 1 (b). The second production modified in view of a semantic 
evaluation in a single pass from left to right. 

< block > used 

< dec lara t ion  l i s t  > o r ig ina l  updated < statement l i s t  ed 

Fig. 1 (c). The second production modified such as to allow a 
semantic evaluation in two passes. 

. . . . . .  ion) 
< bl°elk > I used ~.__ k e m p t y ~ l e )  

< statement l i s t  > used o r ig ina l  updated  

l anguage  into  a fo rm which al lows an eva lua t ion  in a 
few passes  f rom left  to  r ight ,  and  the quest ion how 
difficult (or easy) this  m a y  be for the cons t ruc t s  found  
in real  p r o g r a m m i n g  languages .  

2.  E x a m p l e  

W e  show as an example  how an a t t r ibu te  g r a m m a r  
can be used to  descr ibe  the scope rules of  Algol .  We  

cons ider  the fo l lowing s;mplified syntax:  

(1) (program) ~ (block) 
(2) (block) ---+ (statement list) 
(3) (statement list) ~ (statement list) (statement) 
(4) ~ (statement) 
(5) (statement) --~ (identifier declaration) 
(6) ~ (executable statement) 
(7) ~ begin (block) end 

Each  syntac t ic  symbo l  may  have one or  more  assoc ia ted  
a t t r ibutes .  Each  a t t r ibu te  represents  a " s y m b o l  t a b l e , "  
i.e. a list of  identif ier  dec la ra t ions .  The  fo l lowing at- 
t r ibute  names  are  used:  

used: attribute of (block), (statement list), (statement), and (exe- 
cutable statement). The value is the symbol table containing all 
identifier declarations whose scope includes the syntactic symbol 
concerned, i.e. it contains all identifiers which are valid for the 
syntactic symbol. The declaration of an identifier is searched 
starting at the end of the table. 

declaration: attribute of (identifier declaration). The value is a new 
identifier declaration to be appended to the symbol table. 

orighlal and updated: attributes of (statement list), and (statement). 
These attributes can be understood in the following terms: The 
"updated" symbol table of a (statement) is identical to the 
"origh~al" one, except that it contains the new "declaration" in 
the case where the (statement) is an (identifier declaration). 
Similarly, the "updated" symbol table of a (statement list) con- 
tains the "original" one plus the "declarations" which are part 
of the (statement list). 

F o r  each p r o d u c t i o n  rule,  there  are  cer ta in  evalua-  
t ion rules tha t  specify how the values  of  the a t t r ibu te  
occurrences  are ob ta ined .  The  eva lua t ion  rules for  this  
example  are  shown in F igure  l (a ) .  The  dashed  lines 
indicate  the syntac t ic  re la t ion  of  the symbols ,  and  an 
a r row between two a t t r ibu te  occurrences  indica tes  tha t  
the second a t t r ibu te  will have the same value as the first 
one. In p roduc t ion  rule (1) the "original" symbo l  tab le  
is ini t ia l ized,  in p roduc t ion  rule (5) a new "declaration" 
is a p p e n d e d  to the symbo l  table ,  and  the i n f o r m a t i o n  in 
the "used" symbol  table  is used in the (executable  s tate-  
ment )  of  p roduc t i on  rule (6). F igu re  2 shows the der iva-  
t ion tree of  a sample  p r o g r a m  and  its semant ic  eva lua-  
t ion accord ing  to the rules of  F igure  l (a ) .  The  a r rows  
indicate  how the values  of  cer ta in  a t t r ibu tes  depend  on 
the values  of  the o ther  a t t r ibu tes  in the de r iva t ion  tree. 
The  order  of  the  eva lua t ion  of  a t t r ibu tes  is only  indi-  
rectly de t e rmined  by the rules of  F igu re  l (a ) .  In the 
case of  the de r iva t ion  tree of  F igu re  2, one can s ta r t  by 
ass igning to the "used" symbol  tab le  of  the t o p m o s t  
(b lock)  the value "emptytable," and  then one can t rans-  
fer this  value to  o ther  a t t r ibu tes  in the tree by fo l lowing  
the ar rows.  Each  occurrence  of  p roduc t i on  (5) within 
the tree adds  a new identif ier  dec la ra t ion  to the value of  
the symbo l  table.  The  a t t r ibu tes  in the subtree  of  the 
e m b e d d e d  (b lock)  can only be eva lua ted  af ter  its 
"used" symbo l  tab le  has  ob ta ined  its value in the sur- 
r o u n d i n g  subtree  of  the (p rog ram) .  

F o r  this  de r iva t ion  tree,  one sees immed ia t e ly  tha t  
the "used" symbol  table  confo rms  with the A l g o l  scope 
rule for e m b e d d e d  b locks ,  and  it is easy to  verify tha t  

S6 Communications February 1976 
of Volume 19 
the ACM Number 2 



Fig. 2. The derivation tree of a sample program showing the evaluation of the attributes. The names of the syntactic symbols a n d  
the attributes are abbreviated. 
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this holds for any derivation tree which is formed ac- 
cording to the rules of  Figure 1 (a). 

This example illustrates the use of  an attr ibute gram- 
mar  for describing a p rogramming  language construct.  
We come back to this example in the following sections, 
and show how this g rammar  can be modified so that  the 
attributes can be evaluated in a few passes f rom left to 
right over the derivation tree of  a program.  

3 .  A t t r i b u t e  G r a m m a r s  

D e f i n i t i o n  
In this section we give a definition of  at tr ibute gram- 

mars, which is similar to the one in [1], and discuss some 
points which are impor tan t  when using such grammars  
for the definition of  p rogramming  languages. 

An  attribute g rammar  is a context-free g rammar  
augmented with attributes and semantic rules. More  
precisely, an at tr ibute g rammar  consists of: 

1. A reduced  context-free g rammar  Go = ( V r ,  VN, 
P, So). The sets Vr of  terminal and Vr of  nonterminal  
symbols form the vocabulary  V = Vr U Vu ; P is the set 
of  product ion rules, and So E V~ is the start symbol,  
which does not  appear  on the right side of  any produc-  
tion rule. A product ion ru lep  ~ P is written in the form 

p: Xo --+ X1X2 . . .  X,,~ 

57  

w h e r e n , > 7  1,X0 ~ V , , , a n d X k  E V f o r l  - . < k < n p .  

2. A set of  attributes. Each  attr ibute can be under- 
s tood as a data type [8]. For  each symbol X C V, there 
are the disjoint (sub-)sets I(X) of  inherited and S(X) 
of  synthesized attributes. We have I(X) = ,C for the 
start symbol  and for all terminal symbols. We write 
A(X) for the union I(X) U S(X). 

3. The evaluation of  the attributes is defined within 
the scope of  a single produc t ion :  a product ion p is said 
to have the attribute occurrence (a, k) if a C A(Xk) 
where X~ is the kth symbol  o f p  (k = 0, . . .  , np). An  
attribute occurrence (a, k) can be unders tood as a vari- 
able of  type a associated with the symbol  Xk which can 
take on attribute values according to its type. 

For  each occurrence (i, k) of  an inherited attr ibute i 
on the right side o f  a product ion  p (k = 1, - . .  , np), 
there is an associated semantic function r(p) j(i,k) , and for 
each occurrence (s, O) of  a synthesized attr ibute s on the 
left side of  p, there is an associated semantic function 
fop) (8.0). These semantic functions determine the value 
for the attribute occurrence as a funct ion of  values 
of  certain other attr ibute occurrences in the same 
product ion.  

A dependency set n(p) --,(a.k) is the set of  at tr ibute occur-  
rences whose values are used for the evaluation of  the 
attribute occurrence (a, k) by the semantic funct ion 

f ( p )  (a,k) • The possibility that  a given semantic function,  
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for certain values of  some attribute occurrences in the 
dependency set, may not depend on the values of some 
other attribute occurrences in the dependency set is 
ignored throughout this paper. 

We now consider the context-free language L(Go) 
generated by the syntax Go. The analysis of a program 
in this language can be thought of as being done in two 
phases, which, under certain conditions (see below), 
can be performed in a single pass f rom left to right: 

(i) Syntax analysis: the construction of the deriva- 
tion tree(s) of the program. 

(ii) Semantic. evaluation: the evaluation of the at- 
tribute occurrences at the node symbols of the tree. 
This evaluation is determined by the semantic functions 
of the attribute grammar.  It  is important  to note that 
each occurrence of an inherited attribute at a certain 
node performs a transfer of information within the 
derivation tree from the top down (i.e. f rom the start 
symbol towards the terminal nodes) since its value is 
determined by a semantic function of the production 
above the node, and is (probably) used by some seman- 
tic function of the production below. Similarly a syn- 
thesized attribute occurrence performs a transfer of 
information from the bot tom up. The synthesized at- 
tribute values at the terminal nodes of the tree are 
determined initially (in a compiler, this is the task of 
the lexical scanner). 

The difference between this definition of attribute 
grammars  and the one given in [1] lies in the fact that 
the terminal symbols can have synthesized but no in- 
herited attributes, and in an at tempt to distinguish 
dear ly  between an attribute (viewed as a data type) 
and its occurrences (viewed as variables) within a 
production. 

In the example of Section 2, the attributes used and 
original are inherited, and updated and declaration are 
synthesized. The semantic functions are simple value 
transfers, except in production (5) where the value of 
the occurrence of updated is obtained by appending the 
attribute value "declaration" to the "original." 

Discussion 
a. The order of evaluation. In general, the order of the 
semantic evaluation can be very complicated, and is de- 
termined by the dependency sets of the semantic func- 
tions and the form of the derivation tree. The problem is 
to find an order in which the semantic functions of the 
production rules in the derivation tree can be executed, 
such that at the moment  when any given function f is 
executed, the attribute values corresponding to the de- 
pendency set o f f  are already evaluated. I f  such an or- 
der does not exist we have a derivation tree on which 
the semantics is defined in a circular manner. Knuth  [1] 
has given an algorithm for testing an attribute gram- 
mar  for the possibility of generating a derivation tree 
with such a circularity. Unfortunately, in general, the 
complexity of  any deterministic algorithm to solve this 

problem is such that the execution time is an expo- 
nential function of the size of the grammar  description 
(see [18]). 

A general algorithm for the evaluation of attributes 
has been described and implemented by Fang [9]. He 
uses parallel processes, one for each semantic function 
in the derivation tree. A process is passivated when it 
tries to use an attribute occurrence which is not yet 
evaluated, and it is reactivated when that attribute oc- 
currence has been evaluated by some other process. 
Such an algorithm tends to be not very efficient. 

b. Using attribute grammars for language definition. 
Attribute grammars  have been used [4] to define a pro- 
gramming language in terms of its compilation into a 
more simple language which is well defined and imple- 
mented. Since the semantics is specified in a local man- 
ner, i.e. the attribute values of a syntactic symbol within 
the derivation tree of a program depend only on the val- 
ues of the immediate neighbors in the tree, this gives rise 
to a simple and comprehensible semantic specification 
which is structured according to the syntax of the 
language. 

Compiler writing systems have been constructed 
which allow a specification of the semantics in terms of 
semantic attributes and functions [9-12]. The semantic 
functions, which specify the evaluation of attribute oc- 
currences, are the semantic actions of the generated 
compiler and are generally expressed in some con- 
venient programming language. 

To describe the code generation of a compiler in the 
f ramework of attribute grammars,  several approaches 
have been made. Knuth [1] has originally proposed to 
use a particular synthesized attribute which represents, 
at each node X of the derivation tree, the translation of 
the subtree of X. Then the root node contains the 
translation of the whole program. Another approach 
is to introduce particular semantic rules for output 
generation, as has been proposed with translation 
grammars  [13]. In [12], on the other hand, the aspects 
of syntax, semantic actions, and code generation are all 
described in the f ramework of one language. Semantic 
attributes have also been proposed for the specification 
of code optimization [19]. 

c. Semantic conditions. Most practical languages are 
not context-free, although many programming languages 
allow for a context-free syntax. In many cases the fol- 
lowing approach has been used when defining a pro- 
gramming language L: by means of a context-free 
grammar  Go the language L(G0) of syntactically correct 
programs is defined, and then additional restrictions are 
given that have to be fulfilled by each program of L. This 
approach can be formalized in different ways [6, 7, 14]. 
In the f ramework of attribute grammars,  additional re- 
strictions can be introduced by semantic conditions as 
follows: 

We define a language L (not necessarily context- 
free) in two steps: 
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(i) We give an attribute grammar  with a context- 
free syntax Go such that L(Go) is an envelope for L, i.e. 
L C L(Go). 

(ii) For  each production p of Go we give a set of  
semantic conditions. Each condition is a relation between 
the values of attribute occurrences in the production p 
which must be satisfied for each occurrence of the pro- 
duction p within the derivation tree of a program of L. 

The second step (ii) is the selection of the semantically 
correct programs, which constitute the language L, out 
of the syntactically correct programs of L(Go). One can 
use a synthesized " e r r o r "  attribute [4] associated with 
all nonterminal symbols in order to indicate whether a 
derivation tree corresponds to a semantically correct 
program. 

Semantic conditions can also be useful for the parsing 
of programs. For a given programming language, the 
adopted parsing algorithm may be unable, on certain 
occasions, to choose among several parsing possibilities 
on the basis of the syntax alone. Then it is generally not 
difficult to find some semantic conditions which allow 
the choice. We note, however, that in this case the 
semantic attributes involved in the semantic conditions 
must be evaluated during the same pass from left to 
right together with the syntax analyisis. 

4. Evaluation from Left to Right 

Under certain conditions the attributes of a deriva- 
tion tree can be evaluated in a single pass from left to 
right. The following algorithm defines what we mean by 
an evaluation pass from left to right over a derivation 
tree. 

ALGORITHM 1 
(Attribute evaluation from left to right) 

The algorithm consists of  stepping through the 
derivation tree and evaluating attributes locally accord- 
ing to the semantic functions of the productions in the 
tree, in the order of a recursive descent from left to right. 
This is realized by calling a recursive procedure evaluate- 
subtree (node) using as parameter  the root of the tree. 

The action of the procedure evaluate-subtree (node) 
can be described in the following terms, where we sup- 
pose that at the "node"  the production p : X o  --~ 
X l  " ' "  X n p  applies: 

for k := 1 to n~ (i.e. for each descendant of "node" from left to 
right) do 

if Xk is nonterminal then 
evaluate occurrences of inherited attributes at the k-th 

descendant of "node" using the appropriate 
semantic functions of p; 

call evaluate-subtree (k-th descendent of"node"); 
(we note that occurrences of synthesized attri- 
butes at the kth descendant are thereby evalu- 
ated) fi; 

evaluate occurrences of synthesized attributes at the "node" using the 
appropriate semant& fimctions of p. 

THEOREM 1. Given an attribute grammar,  the attri- 
butes o f  any derivation tree can be evaluated in a single 
pass f rom left to right i f  the dependency sets o f  the se- 
mantic functions o f  any production p:Xo ~ ) ( 1 . . .  X,,p o f  
the grammar satisfy the conditions 

O (p) i7 So JZf (1) (s,0) = 

f o r  all synthesized attributes s ~ S(Xo) and 

D (')(,,k) 17 s 0 U  U (Ik, U s k , )  = .~ (2) 
k t ~ k  

f o r  all k = I, . . .  , npand  i C l(Xk),  where lk and S~ are 
respectively the sets o f  inherited and synthesized attribute 
occurrences at the k-th symbol o f  the production. 

One can show that if these conditions are satisfied 
then all attribute occurrences can be evaluated by fol- 
lowing the algorithm given above, since at each point 
of  the algorithm, when an attribute occurrence must be 
evaluated, the dependency set of  the corresponding 
semantic function contains only attribute occurrences 
which have been evaluated previously. 

It is to be noted that condition (1) represents no 
restriction of generality, if circularity of attribute defi- 
nitions is excluded. In particular, circularity can be due 
to a local circular definition, i.e. a situation where the 
semantic functions of a single production, independ- 
ently of  the surrounding context in the derivation tree, 
imply a circular definition. In the absence of this kind 
of local circularity (which can be easily checked, but 
does not exclude global circularity [1]) it is easy to find, 
for each production rule, an equivalent set of semantic 
functions which use only those attribute values which 
are furnished by the surrounding context of the produc- 
tion within the derivation tree, i.e. the equivalent se- 
mantic functions satisfy 

np 

~o,~) c I0 U U s~, (3) 
k ' = l  

f o r k  = 0 a n d a  ~ S(Xo) as well a s k  = 1, . - .  , n p a n d  
a C l(Xk).  This implies condition (1) above, but not 
condition (2). For  an attribute grammar  which satisfies 
(3), the above theorem can be stated with an "if  and 
only if"  : 

THEOREM 2. Given an attribute grammar such that 
condition (3) is satisfied, the attributes o f  any derivation 
tree can be evaluated in a single pass f rom left to right i f  
and only i f  the condition 

D (p) N ~J Sk, ( i ,k ) 
k ~ k  

is satisfied f o r  all k = 1, • • • , np and i 6 I(X~). 
In fact, if this condition is not satisfied for the 

dependency set of some attribute occurrence in some 
production then the algorithm given above cannot be 
followed on a derivation tree which contains this pro- 
duction. 

Coming back to the example of Section 2, we see 
that an evaluation from left to right is impossible be- 
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cause of the semantic function for the attribute used in 
production (2). At least two passes from left to right are 
necessary for this grammar,  since the identifier declara- 
tions can be placed among executable statements and 
embedded blocks in any order. If  we change the syntax 
such that all identifier declarations of a block are located 
at its beginning then we can obtain an attribute gram- 
mar which allows a single pass from left to right for the 
semantic evaluation, Such a grammar  is, for instance, 
the following: 

(program) --~ (block) 
(block) --~ (declaration list) (statement list) 
(declaration list) ~ (declaration list) (identifier declaration) 

(identifier declaration) 
(statement list) ---, (statement list) (statement) 

(statement) 
(statement) ---, (executable statement) 

begin (block) end 

The attributes are the same as in the example of Section 
2, except that the attributes original and updated are only 
associated with the symbol (declaration list). The se- 
mantic functions for the second production are shown 
in Figure l(b),  the others are similar to those in the 
example of Section 2. 

It  is obvious that the construction of the derivation 
tree (the syntax analysis) for a program and the evalua- 
tion of the semantic attributes can be done during one 
single pass, reading the terminal symbols of the program 
from left to right, if the language allows a top-down 
syntax analysis without backup ( L L ( k ) )  and the seman- 
tic functions satisfy conditions (1) and (2). In fact, 
independently, Lewis et al. [13] have defined an "attri- 
buted pushdown machine ,"  and find that there exists a 
deterministic attributed pushdown machine which per- 
forms the syntax analysis and the evaluation of the 
attributes for any program of a given attribute g rammar  
(a) if the syntax of the g rammar  is L L ( k )  and the se- 

mantic functions satisfy conditions (1) and (2), or 
(b) if the syntax of the grammar  is L R ( k )  and there are 

only synthesized attributes, the semantic functions 
satisfying condition (1). 

5. Several Passes from Left to Right 

In the preceding section we showed that the semantic 
attributes within a derivation tree of a program can be 
evaluated in a single pass from left to right if certain 
conditions are satisfied. In this section we consider the 
case that several passes from left to right are necessary 
to evaluate all attributes. Each pass is executed by fol- 
lowing Algorithm 1, given in Section 4. We now describe 
an algorithm which decides, for a given attribute gram- 
mar,  whether all occurrences of attributes within the 
derivation tree of any program can be evaluated by 
doing a fixed number of passes over the derivation tree 
f rom left to right and how many passes are necessary. 

There are attribute grammars  without circularity 
such that the attributes of an arbitrary derivation tree 

cannot be evaluated in a limited number of passes. The 
grammar  of Section 2 is an example. For  the derivation 
tree of Figure 2, the attributes can be evaluated in three 
passes, but each additional embedding of blocks in the 
program necessitates an additional pass for the evalua- 
tion of attributes. 

In order to determine for a given attribute grammar  
the number of passes which are necessary to evaluate all 
attributes on any derivation tree, we consider for each 
nonterminal X the subset A m ' ( X )  c A ( X )  of those at- 
tributes the occurrences of which are evaluated during 
the mth pass. Each semantic function applied during 
the mth pass can use the values 'of all attribute occur- 
rences evaluated during previous passes, and the values 
of those attribute occurrences evaluated during the same 
pass subject to conditions similar to (1) and (2). We 
use the notation 

N r  (p) L,(a,O) = So 

for (a, 0) E So and 

Nr(P)  • . ( o , ~ )  = So U O (Ik, U S~,) 
k t = k  

for k = 1, . . .  , np and (a, k) E I k .  Then the following 
algorithm determines for each consecutive pass f rom 
left to right which attributes can be evaluated. 

ALGORITHM 2 
(The idea of this algorithm is to assume initially 

that, during each pass, it is possible to evaluate all re- 
maining undefined attributes. In the inner loop, it is 
verified that  this is indeed possible.) 

Variables used 

m: the number  of the present pass; 
i f ( X )  and B ( X )  f o r  all X E V: which signify respec- 

tively the subsets of attributes of X which may be 
evaluated during the present pass and those which 
have been evaluated in the previous passes; 

The algori thm 

m : = 0 ;  
~(X) := A(X) for all X E VT ; 
B(X) := 0 .for all X E V~¢ ; 
For each pass do the following: 
m : = m + l ;  
B'(X) := A(X) -- B(X) for all X E V; 
Repeat the followh~g: 

Test for all p E P, all k = 1 , . . .  , i1,, 
.for all inherited attributes a E B'(Xpk), where Xpk is the symbol 
at the k-th position in the production p, and all synthesized attri- 
butesa E B'(Xpo) 

whether the conditions 
(a) a' E B(Xpk,) O B'(Xpk,) attd 

n t r  (~)  ^ (b) if (a', k') E Jv~C~.k) thena' E B(X~,k,) 
r~ (7~) are satisfied.for all (a', k') E ~ (,.k) • 

(We note that the condition (b) means that if the attribute oc- 
currence (a', k') used for the evaluation of (a, k) is "not to the 
left" of the occurrence (a, k), then a' should have been evalu- 
ated during a previous pass.) 

Eliminate the attributes .for which these conditions are not satisfied 
from the corresponding B' 

Until these conditions are satisfied for all remaining attributes. 
Obtain Am'(X) := i f ( X ) a n d B ( X ) : =  B( X) O i f (X ) for  all X E F ~ . 
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Termination 
(a) If no attribute was eliminated during the pass, 

one obtains 

/~(X) = A(X) for all X E VN. 

This was the last pass and all attributes can be evaluated. 

(b) If some attribute was eliminated during the 

pass, and 

B'(X) = .~ for all X E V,,, 

then the remaining attributes cannot  be evaluated in a 
limited number of left-to-right passes. (This case occurs 
in particular if the semantic rules of the grammar are 
circular). 

(c) If  some attribute was eliminated during the 
pass, and 

B'(X) ~ $2S for some X E V~ , 

then another pass must be tried. 

It is easy to see that the algorithm terminates. The 
inner loop for a given pass terminates because for each 
X E VN the number of attributes initially in the set 
B'(X) is finite. Similarly, the total number of passes 
considered will be finite, since during each pass, except 
the last one, the number of attributes in the set B(X) 
increases for at least one X E V~, and we have/~(X) c 
A(X), the latter being finite sets. 

If the attribute grammar satisfies condition (3) (see 
Section 4) then the number of passes found by the algo- 
rithm is the minimum number of passes necessary for the 
evaluation of all attributes on an arbitrary derivation 
tree. This can be shown by applying Theorem 2 (Sec- 
tion 4), for each given pass, to the set of attributes Am' 
that are evaluated. If the condition (3) is not satisfied 
then the algorithm gives an upper bound for the number 
of left-to-right passes necessary. We also note that, 
independently of condition (3), if we consider the attri- 
bute evaluation on a particular derivation tree, certain 
attribute occurrences may be evaluated in an earlier pass 
than determined by this algorithm. 

Applying this algorithm to the example of Section 2 
shows that the attribute used cannot be evaluated during 
the first pass because of the semantic function of produc- 
tion (2). Therefore original cannot be evaluated (be- 
cause of production (2)), and neither can updated (be- 
cause of production (6) and (7)). We conclude that there 
is no attribute such that all of its occurrences in an 
arbitrary derivation tree can be evaluated during the 
first pass. The same holds for the following passes. 

By making a small change in the semantic functions 
of production (2) we obtain a grammar which allows a 
semantic evaluation of any derivation tree in two passes 
from left to right. The new production (2) is shown in 
Figure l(e). During the first pass, the occurrences of 
the attributes original and updated are evaluated, and 
during the second those of used. (The occurrences of 
declaration are evaluated initially, because they are 
associated with a terminal symbol). We note that the 
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changed grammar discussed here is semantically equiva- 
lent [3] to the original one; this is not the case for the 
change discussed in Section 4. 

6. Applications 

In the last two sections we have described the evalua- 
tion of semantic attributes in several passes from left to 
right over the derivation tree, which is in contrast to 
Knuth 's  approach [1] of evaluating the attribute occur- 
rences in any order possible. In this section we discuss 
how the concept of left-to-right evaluation can be used 
for the compilation and definition of programming 
languages. 

The results of the previous sections lead us to design- 
ing multipass compilers of the following form: apart 
from the lexical and syntactic analysis of the program, 
each compiler pass reads over the internal representa- 
tion of the derivation tree of the program from left to 
right (see Algorithm 1, Section 4), and evaluates all 
occurrences of certain attributes in the derivation 
tree. 

Given the attribute grammar of the language, Algo- 
rithm 2 (Section 5) determines, independent of :he pro- 
gram, which attributes are evaluated during any given 
pass. In particular, Algorithm 2 determines the number 
of evaluation passes (typically two or three) that are 
necessary for the programming language, and detects 
circular attribute definitions. We note that Algorithm 
2 is less complex, and more efficient for large grammars 
than the circularity test of Knuth [1, 18]. In addition, 
the considered multipass compilers are more efficient 
than the compilers described by Fang [9] which allow 
any order of attribute evaluation. 

The internal representation of the derivation tree 
poses some problems if the central memory of the com- 
puter is not large enough to contain the whole tree of 
the program, and complex attributes, such as symbol 
tables, must be represented. For  the compilation of 
Algol 60, for example, Naur [15] has used a scheme of 
several passes from left to right and from right to left. 
His scheme allows writing the internal representation of 
a (block) and its "updated" symbol table [see Figure 
l(c)] on auxiliary storage during a pass from right to 
left. During another pass, from left to right, this symbol 
table can be read and combined with the inherited sym- 
bol table [see Figure l(c)] before being used in the 
analysis of the (block), which is subsequently read from 
auxiliary storage. Using complex attributes, such as 
symbol tables, also brings up the problem that it is 
inefficient to use separate copies for the value of such an 
attribute at different nodes of the derivation tree. In- 
stead pointers could be used. In the case of the grammar 
of Figures l(a) and l(c), which allows an evaluation in 
two passes, it is sufficient to have only one copy of a 
symbol table per (block) to represent the "original" 
and "updated" attributes during the first pass. During 
the second pass, a single copy of a "used" symbol table 
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is sufficient which is used like a stack throughout  the 

whole program.  
M a n y  constructs typically found in p rogramming  

languages pose no problems for a semantic evaluation 
in a single pass f rom left to right. However ,  some other 
constructs  necessitate several passes. As an example, 
we have already shown the problems related to the 
symbol  table attr ibute in a language with Algol block 
structure. An evaluation o f  the attributes in two passes 
could be obtained without  changing the original lan- 
guage, whereas an evaluation in one pass was obtained 
by changing the syntax and semantics of  the language 
in an essential manner .  Another  example are constructs  
with forward  references, such as if, while [3], or goto 
statements. Realized in a s t ra ightforward way, by 
evaluat ing the label at tr ibutes in one pass and using 
them for the generat ion of  b ranch  instructions in 
another ,  these statements need two passes f rom left to 
right. However ,  simple methods  are known [16] to 
describe the same semantics for an evaluation in a single 

pass. 
It  is normal ly  not  difficult to satisfy the condit ions 

such that  an attr ibute g rammar  allows a semantic 
evaluat ion in a few passes. In the case that  some change 
of  the g rammar  is necessary, it is often possible to prove 
that  the resultant  g rammar  is semantically equivalent 
[31 to the original one. Changes  o f  a g rammar  may also 
be considered in order  to obtain a syntax which allows 
an efficient parsing of  the language. P rog ramming  lan- 
guages are often designed such that  syntax analysis and 
semantic  evaluat ion can be efficiently performed in a 
single pass f rom left to right [17]. 

The idea of  using several passes f rom left to right in 
the t ranslat ion of  programs is not  new. It  has been used 
for  a long time in multipass assemblers and compilers.  
However ,  the concept  of  a pass had not  been formalized.  
We have shown here how this concept  can be formalized 
in the f r amework  of  attr ibute grammars .  We think that  
it is useful as a conceptual  tool  in the design of  p rogram-  
ming languages.  It  also can be used for a compiler  
writing system which is able to generate multipass 

compilers.  
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