
Programming B. Wegbreit
Languages Editor

Semantic Evaluation
from Left to Right
Gregor V. Bochmann
University of Montreal

This paper describes attribute grammars and their use
for the definition of programming languages and com-
pilers; a formal definition of attribute grammars and a
discussion of some of its important aspects are included.
The paper concentrates on the evaluation of semantic
attributes in a few passes from left to right over the de-
rivation tree of a program. A condition for an attribute
grammar is given which assures that the semantics of
any program can be evaluated in a single pass over the
derivation tree, and an algorithm is discussed which
decides how many passes from left to right are in general
necessary, given the attribute grammar. These notions
are explained in terms of an example grammar which
describes the scope rules of Algol 60. Practical ques-
tions, such as the relative efficiency of different evalua-
tion schemes, and the ease of adapting the attribute
grammar of a given programming language to the
left-to-right evaluation scheme are discussed.

Key Words and Phrases: attribute grammars, seman-
tics of programming languages, semantic attributes,
left-to-right parsing, multipass compilers, semantic
evaluation, semantic conditions

CR Categories: 4.10, 4.20, 5.23, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by the National Research
Council of Canada. Author's address: Department d'Informatique,
Universit~ de Montreal, Case Postale 6128, Montreal 101, Quebec,
Canada.

55

I. Introduction

The definition of the semantics of a programming
language can be formulated in different ways. Knuth
[1, 2] has proposed attribute grammars for this purpose.
This kind of language definition consists of two parts:
the syntax defined by a context-free grammar and the
semantics defined in terms of attributes, associated with
the syntactic symbols, and semantic functions which
determine the evaluation of the attributes on the
derivation tree of a program. This method has several
advantages: (a) the semantic description of a language
is structured according to the syntax; (b) the context-
sensitive features of a programming language can be
described; (c) the description of a language can be
checked for consistency and used for automatic com-
piler generation; and (d) different descriptions of the
same language may be proven equivalent [3]. The
method has been used for a definition of the program-
ming language Simula [4]. Related concepts are property
grammars [5], attributed grammars with relations [6],
and affix grammars [7].

In Section 2 we give an example of using an attribute
g rammar for the description of a programming language
construct. The given attribute grammar, which de-
scribes the Algol scope rules, turns out not to be ade-
quate for an evaluation from left to right. Appropriate
changes to the grammar are discussed in the following
sections. Section 3 contains a formal definition of at-
tribute grammars and a discussion of some of its im-
portant aspects. This section is essentially a review of
known results.

In Section 4, we introduce the concept of left-to-
right evaluation, and give conditions which allow a
semantic evaluation of the derivation tree of any pro-
gram in a single pass from left to right. In Section 5,
several passes from left to right are considered, and an
algorithm is given which determines for a given attri-
bute grammar the number of passes necessary. The
concept of left-to-right evaluation in several passes, as
described in this paper, is related to the practice of
writing compilers which do several passes over the
internal representation of a program in order to obtain
its translation. By formalizing the concept of multipass
compilation within the f ramework of attribute gram-
mars, it is possible to determine the attributes that can
be evaluated in each individual pass.

In Section 6, we relate these results to the practice of
compiling programming languages. After pointing out
the relative efficiency of the left-to-right evaluation
scheme compared to more general ones, we discuss the
possibility of recasting the semantic definition of a given

Communications February 1976
of Volume 19
the ACM Number 2

Fig. l(a). Syntactic rules and semantic functions of a simple
grammar, discussed in Section 2.
(1) < program >

a
i

< block >

(2)

C3)

< block > used
'
I
I

< statement l i s t > used o r ig ina l updated

< statement l i s t > used o r ig ina l updated

- N

< statement l i s t > used or ig . Ul~d. <"statement > used or ig . upd.

C4) < statement~l l i s t > usedi ° r i i n a l u p i t e d

|
< statement > used o r ig ina l updated

(S) <" statement > used o r i g i n a l update~

I io
!

< i d e n t i f i e r dec lara t ion > declara%ion

(6) < statement > used o r ig ina l updated , ,
I
i

<.executable statement used

(7) < statement > used o r ig ina l updated

begins < bloc > used ~en__.dd

Fig. 1 (b). The second production modified in view of a semantic
evaluation in a single pass from left to right.

< block > used

< dec lara t ion l i s t > o r ig ina l updated < statement l i s t ed

Fig. 1 (c). The second production modified such as to allow a
semantic evaluation in two passes.

. ion)
< bl°elk > I used ~.__ k e m p t y ~ l e)

< statement l i s t > used o r ig ina l updated

l anguage into a fo rm which al lows an eva lua t ion in a
few passes f rom left to r ight , and the quest ion how
difficult (or easy) this m a y be for the cons t ruc t s found
in real p r o g r a m m i n g languages .

2. E x a m p l e

W e show as an example how an a t t r ibu te g r a m m a r
can be used to descr ibe the scope rules of Algol . We

cons ider the fo l lowing s;mplified syntax:

(1) (program) ~ (block)
(2) (block) ---+ (statement list)
(3) (statement list) ~ (statement list) (statement)
(4) ~ (statement)
(5) (statement) --~ (identifier declaration)
(6) ~ (executable statement)
(7) ~ begin (block) end

Each syntac t ic symbo l may have one or more assoc ia ted
a t t r ibutes . Each a t t r ibu te represents a " s y m b o l t a b l e , "
i.e. a list of identif ier dec la ra t ions . The fo l lowing at-
t r ibute names are used:

used: attribute of (block), (statement list), (statement), and (exe-
cutable statement). The value is the symbol table containing all
identifier declarations whose scope includes the syntactic symbol
concerned, i.e. it contains all identifiers which are valid for the
syntactic symbol. The declaration of an identifier is searched
starting at the end of the table.

declaration: attribute of (identifier declaration). The value is a new
identifier declaration to be appended to the symbol table.

orighlal and updated: attributes of (statement list), and (statement).
These attributes can be understood in the following terms: The
"updated" symbol table of a (statement) is identical to the
"origh~al" one, except that it contains the new "declaration" in
the case where the (statement) is an (identifier declaration).
Similarly, the "updated" symbol table of a (statement list) con-
tains the "original" one plus the "declarations" which are part
of the (statement list).

F o r each p r o d u c t i o n rule, there are cer ta in evalua-
t ion rules tha t specify how the values of the a t t r ibu te
occurrences are ob ta ined . The eva lua t ion rules for this
example are shown in F igure l (a) . The dashed lines
indicate the syntac t ic re la t ion of the symbols , and an
a r row between two a t t r ibu te occurrences indica tes tha t
the second a t t r ibu te will have the same value as the first
one. In p roduc t ion rule (1) the "original" symbo l tab le
is ini t ia l ized, in p roduc t ion rule (5) a new "declaration"
is a p p e n d e d to the symbo l table , and the i n f o r m a t i o n in
the "used" symbol table is used in the (executable s tate-
ment) of p roduc t i on rule (6). F igu re 2 shows the der iva-
t ion tree of a sample p r o g r a m and its semant ic eva lua-
t ion accord ing to the rules of F igure l (a) . The a r rows
indicate how the values of cer ta in a t t r ibu tes depend on
the values of the o ther a t t r ibu tes in the de r iva t ion tree.
The order of the eva lua t ion of a t t r ibu tes is only indi-
rectly de t e rmined by the rules of F igu re l (a) . In the
case of the de r iva t ion tree of F igu re 2, one can s ta r t by
ass igning to the "used" symbol tab le of the t o p m o s t
(b lock) the value "emptytable," and then one can t rans-
fer this value to o ther a t t r ibu tes in the tree by fo l lowing
the ar rows. Each occurrence of p roduc t i on (5) within
the tree adds a new identif ier dec la ra t ion to the value of
the symbo l table. The a t t r ibu tes in the subtree of the
e m b e d d e d (b lock) can only be eva lua ted af ter its
"used" symbo l tab le has ob ta ined its value in the sur-
r o u n d i n g subtree of the (p rog ram) .

F o r this de r iva t ion tree, one sees immed ia t e ly tha t
the "used" symbol table confo rms with the A l g o l scope
rule for e m b e d d e d b locks , and it is easy to verify tha t

S6 Communications February 1976
of Volume 19
the ACM Number 2

Fig. 2. The derivation tree of a sample program showing the evaluation of the attributes. The names of the syntactic symbols a n d
the attributes are abbreviated.

< program >

l ~mpty- tab le)

I
< block > us

,
I
I

< s t a t 1 > s or uL

< s t a t 1> us o r uo

- / / / , , - ' ! " - - t 7 / - .

f f / , " <block> us . .

. 4 , l / . - i \ --..
us o r up , I ~ ~ ' x

/

< s t a t 1>

< s t a r 1> dg oi" u~ < s t a t > ffs g r up 1 /
ok p ; /

:7 , "
< e x s t a r > us < i d d> d~c l b e ~ i n

< s t a t 1> Us or up "~ /
<s.~tat 1> us o r up star-,,-" us o r up

< ~ - - - ~ ~ f - .- ~ ~ ~ t sl~at / ~ US o r up " ~ s t a ~ US o r up •
I I , P t ~ ,

< s t a t > us o1~ up I A ~ '

<ex stat7 us <id d> decl ex ~ stat~ end

< s t a t > us I K-;P
I
I
I
I
I
I
I
I

I

I
I
I
I
I

I
<ex s t a r > us

this holds for any derivation tree which is formed ac-
cording to the rules of Figure 1 (a).

This example illustrates the use of an attr ibute gram-
mar for describing a p rogramming language construct.
We come back to this example in the following sections,
and show how this g rammar can be modified so that the
attributes can be evaluated in a few passes f rom left to
right over the derivation tree of a program.

3 . A t t r i b u t e G r a m m a r s

D e f i n i t i o n
In this section we give a definition of at tr ibute gram-

mars, which is similar to the one in [1], and discuss some
points which are impor tan t when using such grammars
for the definition of p rogramming languages.

An attribute g rammar is a context-free g rammar
augmented with attributes and semantic rules. More
precisely, an at tr ibute g rammar consists of:

1. A reduced context-free g rammar Go = (V r , VN,
P, So). The sets Vr of terminal and Vr of nonterminal
symbols form the vocabulary V = Vr U Vu ; P is the set
of product ion rules, and So E V~ is the start symbol,
which does not appear on the right side of any produc-
tion rule. A product ion ru lep ~ P is written in the form

p: Xo --+ X1X2 . . . X,,~

57

w h e r e n , > 7 1,X0 ~ V , , , a n d X k E V f o r l - . < k < n p .

2. A set of attributes. Each attr ibute can be under-
s tood as a data type [8]. For each symbol X C V, there
are the disjoint (sub-)sets I(X) of inherited and S(X)
of synthesized attributes. We have I(X) = ,C for the
start symbol and for all terminal symbols. We write
A(X) for the union I(X) U S(X).

3. The evaluation of the attributes is defined within
the scope of a single produc t ion : a product ion p is said
to have the attribute occurrence (a, k) if a C A(Xk)
where X~ is the kth symbol o f p (k = 0, . . . , np). An
attribute occurrence (a, k) can be unders tood as a vari-
able of type a associated with the symbol Xk which can
take on attribute values according to its type.

For each occurrence (i, k) of an inherited attr ibute i
on the right side o f a product ion p (k = 1, - . . , np),
there is an associated semantic function r(p) j(i,k) , and for
each occurrence (s, O) of a synthesized attr ibute s on the
left side of p, there is an associated semantic function
fop) (8.0). These semantic functions determine the value
for the attribute occurrence as a funct ion of values
of certain other attr ibute occurrences in the same
product ion.

A dependency set n(p) --,(a.k) is the set of at tr ibute occur-
rences whose values are used for the evaluation of the
attribute occurrence (a, k) by the semantic funct ion

f (p) (a,k) • The possibility that a given semantic function,

Communications February 1976
of Volume 19
the ACM Number 2

for certain values of some attribute occurrences in the
dependency set, may not depend on the values of some
other attribute occurrences in the dependency set is
ignored throughout this paper.

We now consider the context-free language L(Go)
generated by the syntax Go. The analysis of a program
in this language can be thought of as being done in two
phases, which, under certain conditions (see below),
can be performed in a single pass f rom left to right:

(i) Syntax analysis: the construction of the deriva-
tion tree(s) of the program.

(ii) Semantic. evaluation: the evaluation of the at-
tribute occurrences at the node symbols of the tree.
This evaluation is determined by the semantic functions
of the attribute grammar. It is important to note that
each occurrence of an inherited attribute at a certain
node performs a transfer of information within the
derivation tree from the top down (i.e. f rom the start
symbol towards the terminal nodes) since its value is
determined by a semantic function of the production
above the node, and is (probably) used by some seman-
tic function of the production below. Similarly a syn-
thesized attribute occurrence performs a transfer of
information from the bot tom up. The synthesized at-
tribute values at the terminal nodes of the tree are
determined initially (in a compiler, this is the task of
the lexical scanner).

The difference between this definition of attribute
grammars and the one given in [1] lies in the fact that
the terminal symbols can have synthesized but no in-
herited attributes, and in an at tempt to distinguish
dear ly between an attribute (viewed as a data type)
and its occurrences (viewed as variables) within a
production.

In the example of Section 2, the attributes used and
original are inherited, and updated and declaration are
synthesized. The semantic functions are simple value
transfers, except in production (5) where the value of
the occurrence of updated is obtained by appending the
attribute value "declaration" to the "original."

Discussion
a. The order of evaluation. In general, the order of the
semantic evaluation can be very complicated, and is de-
termined by the dependency sets of the semantic func-
tions and the form of the derivation tree. The problem is
to find an order in which the semantic functions of the
production rules in the derivation tree can be executed,
such that at the moment when any given function f is
executed, the attribute values corresponding to the de-
pendency set o f f are already evaluated. I f such an or-
der does not exist we have a derivation tree on which
the semantics is defined in a circular manner. Knuth [1]
has given an algorithm for testing an attribute gram-
mar for the possibility of generating a derivation tree
with such a circularity. Unfortunately, in general, the
complexity of any deterministic algorithm to solve this

problem is such that the execution time is an expo-
nential function of the size of the grammar description
(see [18]).

A general algorithm for the evaluation of attributes
has been described and implemented by Fang [9]. He
uses parallel processes, one for each semantic function
in the derivation tree. A process is passivated when it
tries to use an attribute occurrence which is not yet
evaluated, and it is reactivated when that attribute oc-
currence has been evaluated by some other process.
Such an algorithm tends to be not very efficient.

b. Using attribute grammars for language definition.
Attribute grammars have been used [4] to define a pro-
gramming language in terms of its compilation into a
more simple language which is well defined and imple-
mented. Since the semantics is specified in a local man-
ner, i.e. the attribute values of a syntactic symbol within
the derivation tree of a program depend only on the val-
ues of the immediate neighbors in the tree, this gives rise
to a simple and comprehensible semantic specification
which is structured according to the syntax of the
language.

Compiler writing systems have been constructed
which allow a specification of the semantics in terms of
semantic attributes and functions [9-12]. The semantic
functions, which specify the evaluation of attribute oc-
currences, are the semantic actions of the generated
compiler and are generally expressed in some con-
venient programming language.

To describe the code generation of a compiler in the
f ramework of attribute grammars, several approaches
have been made. Knuth [1] has originally proposed to
use a particular synthesized attribute which represents,
at each node X of the derivation tree, the translation of
the subtree of X. Then the root node contains the
translation of the whole program. Another approach
is to introduce particular semantic rules for output
generation, as has been proposed with translation
grammars [13]. In [12], on the other hand, the aspects
of syntax, semantic actions, and code generation are all
described in the f ramework of one language. Semantic
attributes have also been proposed for the specification
of code optimization [19].

c. Semantic conditions. Most practical languages are
not context-free, although many programming languages
allow for a context-free syntax. In many cases the fol-
lowing approach has been used when defining a pro-
gramming language L: by means of a context-free
grammar Go the language L(G0) of syntactically correct
programs is defined, and then additional restrictions are
given that have to be fulfilled by each program of L. This
approach can be formalized in different ways [6, 7, 14].
In the f ramework of attribute grammars, additional re-
strictions can be introduced by semantic conditions as
follows:

We define a language L (not necessarily context-
free) in two steps:

58 Communications February 1976
of Volume 19
the ACM Number 2

(i) We give an attribute grammar with a context-
free syntax Go such that L(Go) is an envelope for L, i.e.
L C L(Go).

(ii) For each production p of Go we give a set of
semantic conditions. Each condition is a relation between
the values of attribute occurrences in the production p
which must be satisfied for each occurrence of the pro-
duction p within the derivation tree of a program of L.

The second step (ii) is the selection of the semantically
correct programs, which constitute the language L, out
of the syntactically correct programs of L(Go). One can
use a synthesized " e r r o r " attribute [4] associated with
all nonterminal symbols in order to indicate whether a
derivation tree corresponds to a semantically correct
program.

Semantic conditions can also be useful for the parsing
of programs. For a given programming language, the
adopted parsing algorithm may be unable, on certain
occasions, to choose among several parsing possibilities
on the basis of the syntax alone. Then it is generally not
difficult to find some semantic conditions which allow
the choice. We note, however, that in this case the
semantic attributes involved in the semantic conditions
must be evaluated during the same pass from left to
right together with the syntax analyisis.

4. Evaluation from Left to Right

Under certain conditions the attributes of a deriva-
tion tree can be evaluated in a single pass from left to
right. The following algorithm defines what we mean by
an evaluation pass from left to right over a derivation
tree.

ALGORITHM 1
(Attribute evaluation from left to right)

The algorithm consists of stepping through the
derivation tree and evaluating attributes locally accord-
ing to the semantic functions of the productions in the
tree, in the order of a recursive descent from left to right.
This is realized by calling a recursive procedure evaluate-
subtree (node) using as parameter the root of the tree.

The action of the procedure evaluate-subtree (node)
can be described in the following terms, where we sup-
pose that at the "node" the production p : X o --~
X l " ' " X n p applies:

for k := 1 to n~ (i.e. for each descendant of "node" from left to
right) do

if Xk is nonterminal then
evaluate occurrences of inherited attributes at the k-th

descendant of "node" using the appropriate
semantic functions of p;

call evaluate-subtree (k-th descendent of"node");
(we note that occurrences of synthesized attri-
butes at the kth descendant are thereby evalu-
ated) fi;

evaluate occurrences of synthesized attributes at the "node" using the
appropriate semant& fimctions of p.

THEOREM 1. Given an attribute grammar, the attri-
butes o f any derivation tree can be evaluated in a single
pass f rom left to right i f the dependency sets o f the se-
mantic functions o f any production p:Xo ~) (1 . . . X,,p o f
the grammar satisfy the conditions

O (p) i7 So JZf (1) (s,0) =

f o r all synthesized attributes s ~ S(Xo) and

D (')(,,k) 17 s 0 U U (Ik, U s k ,) = .~ (2)
k t ~ k

f o r all k = I, . . . , npand i C l(Xk), where lk and S~ are
respectively the sets o f inherited and synthesized attribute
occurrences at the k-th symbol o f the production.

One can show that if these conditions are satisfied
then all attribute occurrences can be evaluated by fol-
lowing the algorithm given above, since at each point
of the algorithm, when an attribute occurrence must be
evaluated, the dependency set of the corresponding
semantic function contains only attribute occurrences
which have been evaluated previously.

It is to be noted that condition (1) represents no
restriction of generality, if circularity of attribute defi-
nitions is excluded. In particular, circularity can be due
to a local circular definition, i.e. a situation where the
semantic functions of a single production, independ-
ently of the surrounding context in the derivation tree,
imply a circular definition. In the absence of this kind
of local circularity (which can be easily checked, but
does not exclude global circularity [1]) it is easy to find,
for each production rule, an equivalent set of semantic
functions which use only those attribute values which
are furnished by the surrounding context of the produc-
tion within the derivation tree, i.e. the equivalent se-
mantic functions satisfy

np

~o,~) c I0 U U s~, (3)
k ' = l

f o r k = 0 a n d a ~ S(Xo) as well a s k = 1, . - . , n p a n d
a C l(Xk). This implies condition (1) above, but not
condition (2). For an attribute grammar which satisfies
(3), the above theorem can be stated with an "if and
only if" :

THEOREM 2. Given an attribute grammar such that
condition (3) is satisfied, the attributes o f any derivation
tree can be evaluated in a single pass f rom left to right i f
and only i f the condition

D (p) N ~J Sk, (i ,k)
k ~ k

is satisfied f o r all k = 1, • • • , np and i 6 I(X~).
In fact, if this condition is not satisfied for the

dependency set of some attribute occurrence in some
production then the algorithm given above cannot be
followed on a derivation tree which contains this pro-
duction.

Coming back to the example of Section 2, we see
that an evaluation from left to right is impossible be-

59 Communications February 1976
of Volume 19
the ACM Number 2

cause of the semantic function for the attribute used in
production (2). At least two passes from left to right are
necessary for this grammar, since the identifier declara-
tions can be placed among executable statements and
embedded blocks in any order. If we change the syntax
such that all identifier declarations of a block are located
at its beginning then we can obtain an attribute gram-
mar which allows a single pass from left to right for the
semantic evaluation, Such a grammar is, for instance,
the following:

(program) --~ (block)
(block) --~ (declaration list) (statement list)
(declaration list) ~ (declaration list) (identifier declaration)

(identifier declaration)
(statement list) ---, (statement list) (statement)

(statement)
(statement) ---, (executable statement)

begin (block) end

The attributes are the same as in the example of Section
2, except that the attributes original and updated are only
associated with the symbol (declaration list). The se-
mantic functions for the second production are shown
in Figure l(b), the others are similar to those in the
example of Section 2.

It is obvious that the construction of the derivation
tree (the syntax analysis) for a program and the evalua-
tion of the semantic attributes can be done during one
single pass, reading the terminal symbols of the program
from left to right, if the language allows a top-down
syntax analysis without backup (L L (k)) and the seman-
tic functions satisfy conditions (1) and (2). In fact,
independently, Lewis et al. [13] have defined an "attri-
buted pushdown machine ," and find that there exists a
deterministic attributed pushdown machine which per-
forms the syntax analysis and the evaluation of the
attributes for any program of a given attribute g rammar
(a) if the syntax of the g rammar is L L (k) and the se-

mantic functions satisfy conditions (1) and (2), or
(b) if the syntax of the grammar is L R (k) and there are

only synthesized attributes, the semantic functions
satisfying condition (1).

5. Several Passes from Left to Right

In the preceding section we showed that the semantic
attributes within a derivation tree of a program can be
evaluated in a single pass from left to right if certain
conditions are satisfied. In this section we consider the
case that several passes from left to right are necessary
to evaluate all attributes. Each pass is executed by fol-
lowing Algorithm 1, given in Section 4. We now describe
an algorithm which decides, for a given attribute gram-
mar, whether all occurrences of attributes within the
derivation tree of any program can be evaluated by
doing a fixed number of passes over the derivation tree
f rom left to right and how many passes are necessary.

There are attribute grammars without circularity
such that the attributes of an arbitrary derivation tree

cannot be evaluated in a limited number of passes. The
grammar of Section 2 is an example. For the derivation
tree of Figure 2, the attributes can be evaluated in three
passes, but each additional embedding of blocks in the
program necessitates an additional pass for the evalua-
tion of attributes.

In order to determine for a given attribute grammar
the number of passes which are necessary to evaluate all
attributes on any derivation tree, we consider for each
nonterminal X the subset A m ' (X) c A (X) of those at-
tributes the occurrences of which are evaluated during
the mth pass. Each semantic function applied during
the mth pass can use the values 'of all attribute occur-
rences evaluated during previous passes, and the values
of those attribute occurrences evaluated during the same
pass subject to conditions similar to (1) and (2). We
use the notation

N r (p) L,(a,O) = So

for (a, 0) E So and

Nr(P) • . (o , ~) = So U O (Ik, U S~,)
k t = k

for k = 1, . . . , np and (a, k) E I k . Then the following
algorithm determines for each consecutive pass f rom
left to right which attributes can be evaluated.

ALGORITHM 2
(The idea of this algorithm is to assume initially

that, during each pass, it is possible to evaluate all re-
maining undefined attributes. In the inner loop, it is
verified that this is indeed possible.)

Variables used

m: the number of the present pass;
i f (X) and B (X) f o r all X E V: which signify respec-

tively the subsets of attributes of X which may be
evaluated during the present pass and those which
have been evaluated in the previous passes;

The algori thm

m : = 0 ;
~(X) := A(X) for all X E VT ;
B(X) := 0 .for all X E V~¢ ;
For each pass do the following:
m : = m + l ;
B'(X) := A(X) -- B(X) for all X E V;
Repeat the followh~g:

Test for all p E P, all k = 1 , . . . , i1,,
.for all inherited attributes a E B'(Xpk), where Xpk is the symbol
at the k-th position in the production p, and all synthesized attri-
butesa E B'(Xpo)

whether the conditions
(a) a' E B(Xpk,) O B'(Xpk,) attd

n t r (~) ^ (b) if (a', k') E Jv~C~.k) thena' E B(X~,k,)
r~ (7~) are satisfied.for all (a', k') E ~ (,.k) •

(We note that the condition (b) means that if the attribute oc-
currence (a', k') used for the evaluation of (a, k) is "not to the
left" of the occurrence (a, k), then a' should have been evalu-
ated during a previous pass.)

Eliminate the attributes .for which these conditions are not satisfied
from the corresponding B'

Until these conditions are satisfied for all remaining attributes.
Obtain Am'(X) := i f (X) a n d B (X) : = B(X) O i f (X) for all X E F ~ .

60 Communications February 1976
of Volume 19
the ACM Number 2

Termination
(a) If no attribute was eliminated during the pass,

one obtains

/~(X) = A(X) for all X E VN.

This was the last pass and all attributes can be evaluated.

(b) If some attribute was eliminated during the

pass, and

B'(X) = .~ for all X E V,,,

then the remaining attributes cannot be evaluated in a
limited number of left-to-right passes. (This case occurs
in particular if the semantic rules of the grammar are
circular).

(c) If some attribute was eliminated during the
pass, and

B'(X) ~ $2S for some X E V~ ,

then another pass must be tried.

It is easy to see that the algorithm terminates. The
inner loop for a given pass terminates because for each
X E VN the number of attributes initially in the set
B'(X) is finite. Similarly, the total number of passes
considered will be finite, since during each pass, except
the last one, the number of attributes in the set B(X)
increases for at least one X E V~, and we have/~(X) c
A(X), the latter being finite sets.

If the attribute grammar satisfies condition (3) (see
Section 4) then the number of passes found by the algo-
rithm is the minimum number of passes necessary for the
evaluation of all attributes on an arbitrary derivation
tree. This can be shown by applying Theorem 2 (Sec-
tion 4), for each given pass, to the set of attributes Am'
that are evaluated. If the condition (3) is not satisfied
then the algorithm gives an upper bound for the number
of left-to-right passes necessary. We also note that,
independently of condition (3), if we consider the attri-
bute evaluation on a particular derivation tree, certain
attribute occurrences may be evaluated in an earlier pass
than determined by this algorithm.

Applying this algorithm to the example of Section 2
shows that the attribute used cannot be evaluated during
the first pass because of the semantic function of produc-
tion (2). Therefore original cannot be evaluated (be-
cause of production (2)), and neither can updated (be-
cause of production (6) and (7)). We conclude that there
is no attribute such that all of its occurrences in an
arbitrary derivation tree can be evaluated during the
first pass. The same holds for the following passes.

By making a small change in the semantic functions
of production (2) we obtain a grammar which allows a
semantic evaluation of any derivation tree in two passes
from left to right. The new production (2) is shown in
Figure l(e). During the first pass, the occurrences of
the attributes original and updated are evaluated, and
during the second those of used. (The occurrences of
declaration are evaluated initially, because they are
associated with a terminal symbol). We note that the

61

changed grammar discussed here is semantically equiva-
lent [3] to the original one; this is not the case for the
change discussed in Section 4.

6. Applications

In the last two sections we have described the evalua-
tion of semantic attributes in several passes from left to
right over the derivation tree, which is in contrast to
Knuth 's approach [1] of evaluating the attribute occur-
rences in any order possible. In this section we discuss
how the concept of left-to-right evaluation can be used
for the compilation and definition of programming
languages.

The results of the previous sections lead us to design-
ing multipass compilers of the following form: apart
from the lexical and syntactic analysis of the program,
each compiler pass reads over the internal representa-
tion of the derivation tree of the program from left to
right (see Algorithm 1, Section 4), and evaluates all
occurrences of certain attributes in the derivation
tree.

Given the attribute grammar of the language, Algo-
rithm 2 (Section 5) determines, independent of :he pro-
gram, which attributes are evaluated during any given
pass. In particular, Algorithm 2 determines the number
of evaluation passes (typically two or three) that are
necessary for the programming language, and detects
circular attribute definitions. We note that Algorithm
2 is less complex, and more efficient for large grammars
than the circularity test of Knuth [1, 18]. In addition,
the considered multipass compilers are more efficient
than the compilers described by Fang [9] which allow
any order of attribute evaluation.

The internal representation of the derivation tree
poses some problems if the central memory of the com-
puter is not large enough to contain the whole tree of
the program, and complex attributes, such as symbol
tables, must be represented. For the compilation of
Algol 60, for example, Naur [15] has used a scheme of
several passes from left to right and from right to left.
His scheme allows writing the internal representation of
a (block) and its "updated" symbol table [see Figure
l(c)] on auxiliary storage during a pass from right to
left. During another pass, from left to right, this symbol
table can be read and combined with the inherited sym-
bol table [see Figure l(c)] before being used in the
analysis of the (block), which is subsequently read from
auxiliary storage. Using complex attributes, such as
symbol tables, also brings up the problem that it is
inefficient to use separate copies for the value of such an
attribute at different nodes of the derivation tree. In-
stead pointers could be used. In the case of the grammar
of Figures l(a) and l(c), which allows an evaluation in
two passes, it is sufficient to have only one copy of a
symbol table per (block) to represent the "original"
and "updated" attributes during the first pass. During
the second pass, a single copy of a "used" symbol table

Communications February 1976
of Volume 19
the ACM Number 2

is sufficient which is used like a stack throughout the

whole program.
M a n y constructs typically found in p rogramming

languages pose no problems for a semantic evaluation
in a single pass f rom left to right. However , some other
constructs necessitate several passes. As an example,
we have already shown the problems related to the
symbol table attr ibute in a language with Algol block
structure. An evaluation o f the attributes in two passes
could be obtained without changing the original lan-
guage, whereas an evaluation in one pass was obtained
by changing the syntax and semantics of the language
in an essential manner . Another example are constructs
with forward references, such as if, while [3], or goto
statements. Realized in a s t ra ightforward way, by
evaluat ing the label at tr ibutes in one pass and using
them for the generat ion of b ranch instructions in
another , these statements need two passes f rom left to
right. However , simple methods are known [16] to
describe the same semantics for an evaluation in a single

pass.
It is normal ly not difficult to satisfy the condit ions

such that an attr ibute g rammar allows a semantic
evaluat ion in a few passes. In the case that some change
of the g rammar is necessary, it is often possible to prove
that the resultant g rammar is semantically equivalent
[31 to the original one. Changes o f a g rammar may also
be considered in order to obtain a syntax which allows
an efficient parsing of the language. P rog ramming lan-
guages are often designed such that syntax analysis and
semantic evaluat ion can be efficiently performed in a
single pass f rom left to right [17].

The idea of using several passes f rom left to right in
the t ranslat ion of programs is not new. It has been used
for a long time in multipass assemblers and compilers.
However , the concept of a pass had not been formalized.
We have shown here how this concept can be formalized
in the f r amework of attr ibute grammars . We think that
it is useful as a conceptual tool in the design of p rogram-
ming languages. It also can be used for a compiler
writing system which is able to generate multipass

compilers.

Acknowledgments . I would like to thank Bill
Arms t rong and Olivier Lecarme for many fruitful

discussions.

Received June 1974; revised February 1975

References
1, Knuth, D.E. Semantics of context-free languages. Math Systems
Th. 2 (1968), 127-145. Correction appears in Math. Systems Th. 5
(1971),95.
2. Knuth, D.E. Examples of formal semantics, In Lecture Notes
in Mathemetics No. 188, Springer-Verlag, Berlin 1971.
3. Bochmann, G.V. Semantic equivalence of syntactically related
attribute grammars. Publ. No. 148, D6partement d'Informatique,
U. de Montreal, Nov. 1973.
4. Wilner, W.T. Declarative semantic definition. Rep. STAN-CS-
233-71, Computer Science Dep., Stanford U., 1971. Also Wilner,
W.T. Formal semantic definition using synthesized and inherited

62

attributes. In Formal Semantics of Programming Languages, R.
Rustin (Ed.), Prentice-Hall, Englewood Cliffs, N.J., 1972.
5. Stearns, R.E., and Lewis, P.M. Property grammars and table
machines, b~form, and Cootrol 14 (1969), 524-549.
6. Culik, K. II, Attributed grammars and languages. Publication
No. 3, D6partement d'Informatique, U. de Montreal, May 1969.
7. Koster, C.H.A. Affix grammars. In Algol 68 Implementation,
North-Holland Pub. Co., Amsterdam, 1971. See also: Crowe, D.
Generating parsers for affix grammars. Comm. ACM 15 (1972),
728-732.
8. Morris, J.H. Jr. Types are not sets. In Proceedings of the
ACM Syrup. on Principles of Programming Languages, Boston,
1973, pp. 120-124.
9. Fang, I. FOLDS, a declarative formal language definition
system. Rep. STAN-CS-72-329, Computer Science Dep., Stanford
U., 1972.
10. Lecarme, O., and Bochmann, G.V. A (truly) usable and port-
able compiler writing system. In Proc. IFIP Congress 74, North-
Holland Pub. Co., Amsterdam, 1974, pp. 218-221.
11. Bouckaert, M., Pirotte, A., and Snelling, M. SOFT: a tool for
writing software. Report R212, Laboratoire de Recherche,
M.B.L.E., Brussels, Jan. 1973.
12. Bosch, R., Grune, D., and Meertens, L. ALEPH, a language
encouraging program hierarchy. In Proc. International Computing
Symp. 1973, North-Holland Pub. Co., Amsterdam, 1974, p. 73.
13. Lewis, P.M., Rosenkrantz, D.J., and Stearns, R.E. Attributed
translations. To be published in J. Computer and Systems Sci.
14. Van Wijngaarden, A., et al. Revised report on the algorithmic
language Algol 68. IFIP, 1973.
15. Naur, P. The design of the GIER ALGOL compiler. BIT,
3 (1963), 124-140 and 145-166, and Amnlal Review 4 (1965), 49-85.
16. Gries, D. Compiler Construction for Digital Computers.
Wiley, New York, 1971.
17. Wirth, N. The design of a PASCAL compiler. Software-
Practice and Experience 1 (1971), 309-333.
18. Jazayeri, M., Ogden, W.F., and Rounds, W.C. On the Com-
plexity of the circularity test for attribute grammars. In Conf.
Record, ACM Syrup. on Principles of Programming Languages,
Palo Alto, Calif., Jan. 20-22, 1975, pp. 119-129.
19. Neel, D., and Amirchahy, M. Semantic attributes and improve-
ment of generated code. In Proc. ACM Congress 1974, San Diego,
Calif., Nov. 1974, pp. 1-10.

Communications February 1976
of Volume 19
the ACM Number 2

